Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Appl Environ Microbiol ; 88(7): e0233821, 2022 04 12.
Article in English | MEDLINE | ID: covidwho-1741572

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is mainly transmitted via droplets and aerosols. To evaluate the role of transmission by fomites, SARS-CoV-2-specific data on transfer rates from surfaces to hands and from hands to face are lacking. Here, we generated quantitatively controlled transfer rates for SARS-CoV-2 from food items (lettuce, ham, and vegetarian meat alternative [VMA]) and packaging materials (cardboard and plastic) to gloves using a wet, dry, and frozen viral inoculum and from glove to glove using a wet viral inoculum. For biosafety reasons, the transfer from surfaces to hands and hands to face was simulated by using gloves. The cumulative transfer rate was calculated by using the data from the first transfer experiment, food or packaging material to glove, and combined with the transfer rate obtained from the second transfer experiment from glove to glove. The cumulative transfer rates from lettuce (4.7%) and ham (3.4%) were not significantly different (P > 0.05) but were significantly higher (P < 0.05) than that from VMA ("wet" or "frozen"). The wet cumulative transfer rate from VMA (1.3%) was significantly higher than the cumulative transfer rate from frozen VMA (0.0011%). No transfer from plastic or cardboard was observed with a dry inoculum. The plastic packaging under wet conditions provided the highest cumulative transfer rate (3.0%), while the cumulative transfer from frozen cardboard was very small (0.035%). Overall, the transfer rates determined in this study suggest a minor role of foods or food packaging materials in infection transmission. IMPORTANCE The observation of SARS-CoV-2 RNA in swab samples from frozen fish packages in China, confirmed only once by cell culture, led to the hypothesis that food contaminated with SARS-CoV-2 virus particles could be the source of an outbreak. Epidemiological evidence for fomites as infection source is scarce, but it is important for the food industry to evaluate this infection path with quantitative microbial risk assessment (QMRA), using measured viral transfer rates from surfaces to hands and face. The present study provides transfer data for SARS-CoV-2 from various types of foods and packaging materials using quantitative methods that take uncertainties related to the virus recovery from the different surfaces into consideration. The transfer data from this model system provide important input parameters for QMRA models to assess the risk of SARS-CoV-2 transmission from contaminated food items.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Fomites , Humans , Plastics , RNA, Viral
2.
Appl Environ Microbiol ; 87(19): e0109821, 2021 09 10.
Article in English | MEDLINE | ID: covidwho-1403023

ABSTRACT

A novel and robust approach to evaluate the antiviral activity of coatings was developed, assessing three commercially available leave-on surface coating products for efficacy against human coronaviruses (HCoVs) HCoV-229E and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The assessment is based on three criteria that reflect real-life settings, namely, (i) immediate antiviral effect, (ii) effect after repeated cleaning of the coated surface, and (iii) antiviral activity in the presence of organic material. The results showed that only a copper compound-based coating successfully met all three criteria. A quaternary ammonium compound-based coating did not meet the second criterion, and a coating based on reactive oxygen species showed no antiviral effect. Moreover, the study demonstrated that HCoV-229E is a relevant SARS-CoV-2 surrogate for such experiments. This new approach allows benchmarking of currently available antiviral coatings and future coating developments to avoid unjustified claims. The deployment of efficient antiviral coatings can offer an additional measure to mitigate the risk of transmission of respiratory viruses like SARS-CoV-2 or influenza viruses from high-touch surfaces. IMPORTANCE SARS-CoV-2, the virus responsible for the coronavirus disease 2019 (COVID-19) pandemic, is transmitted mainly person-to-person through respiratory droplets, while the contribution of fomite transmission is less important than suspected at the beginning of the pandemic. Nevertheless, antiviral-coating solutions can offer an additional measure to mitigate the risk of SARS-CoV-2 transmission from high-touch surfaces. The deployment of antiviral coatings is not new, but what is currently lacking is solid scientific evidence of the efficacy of commercially available self-disinfecting surfaces under real-life conditions. Therefore, we developed a novel, robust approach to evaluate the antiviral activity of such coatings, applying strict quality criteria to three commercially available products to test their efficacies against SARS-CoV-2. We also showed that HCoV-229E is a relevant surrogate for such experiments. Our approach will also bring significant benefit to the evaluation of the effects of coatings on the survival of nonenveloped viruses, which are known to be more tolerant to desiccation and disinfectants and for which high-touch surfaces play an important role.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus 229E, Human/drug effects , Disinfectants/pharmacology , SARS-CoV-2/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL